2,687 research outputs found

    Differential radio astronomy of galactic objects

    Get PDF
    A differential astrometry technique is discussed. An improved proper motion and a parallax limit for pulsar 1929 + 10 is presented as well as a limit on the space velocity of the enigmatic object in SgrA

    Interstellar scattering of pulsar radiation. 1: Scintillation

    Get PDF
    An investigation of the intensity fluctuations of 28 pulsars near 0.4 GHz indicates that scintillation spectra have a Gaussian shape, scintillation indices are near unity, and the scintillation bandwidth depends linearly on dispersion measure. Observations near 2.5 GHz suggest a strong dependence of the frequency at which scintillation indices fall below unity on dispersion measure. Multistation measurements of scintillation provide values or limits for the scale size of the scattering diffraction pattern. The dependences of scattering parameters on dispersion measure is discussed in terms of the current models. It is suggested that any line of sight through the galaxy encounters increasingly rare, increasingly large deviations of thermal electron density on the scale of 10 to the 11th power cm

    Pulsar average waveforms and hollow cone beam models

    Get PDF
    An analysis of pulsar average waveforms at radio frequencies from 40 MHz to 15 GHz is presented. The analysis is based on the hypothesis that the observer sees one cut of a hollow-cone beam pattern and that stationary properties of the emission vary over the cone. The distributions of apparent cone widths for different observed forms of the average pulse profiles (single, double/unresolved, double/resolved, triple and multiple) are in modest agreement with a model of a circular hollow-cone beam with random observer-spin axis orientation, a random cone axis-spin axis alignment, and a small range of physical hollow-cone parameters for all objects

    Multifrequency Observations of Giant Radio Pulses from the Millisecond Pulsar B1937+21

    Full text link
    Giant pulses are short, intense outbursts of radio emission with a power-law intensity distribution that have been observed from the Crab Pulsar and PSR B1937+21. We have undertaken a systematic study of giant pulses from PSR B1937+21 using the Arecibo telescope at 430, 1420, and 2380 MHz. At 430 MHz, interstellar scattering broadens giant pulses to durations of 50μ\sim50 \musecs, but at higher frequencies the pulses are very short, typically lasting only 1\sim1-2μ2 \musecs. At each frequency, giant pulses are emitted only in narrow (\lsim10 \mus) windows of pulse phase located 55\sim 55-70μ70 \musec after the main and interpulse peaks. Although some pulse-to-pulse jitter in arrival times is observed, the mean arrival phase appears stable; a timing analysis of the giant pulses yields precision competitive with the best average profile timing studies. We have measured the intensity distribution of the giant pulses, confirming a roughly power-law distribution with approximate index of -1.8, contributing \gsim0.1% to the total flux at each frequency. We also find that the intensity of giant pulses falls off with a slightly steeper power of frequency than the ordinary radio emission.Comment: 21 pages, 10 Postscript figures; LaTeX with aaspp4.sty and epsf.tex; submitted to Ap

    Astronomy using basic Mark 2 very long baseline interferometry

    Get PDF
    Two experiments were performed in April and September 1976 to determine precise positions of radio sources using conventional Mark 2 VLBI techniques. Four stations in the continental United States observed at a wavelength of 18 cm. The recording bandwidth was 2 MHz. The preliminary results using analyses of fringe rate and delay are discussed and the source positions compared with the results of other measurements
    corecore